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Abstract—Motivated by applications of rateless coding, decision
feedback, and automatic repeat request (ARQ), we study the
problem of universal decoding for unknown channels in the pres-
ence of an erasure option. Specifically, we harness the competitive
minimax methodology developed in earlier studies, in order to
derive a universal version of Forney’s classical erasure/list de-
coder, which in the erasure case, optimally trades off between the
probability of erasure and the probability of undetected error. The
proposed universal erasure decoder guarantees universal achiev-
ability of a certain fraction � of the optimum error exponents of
these probabilities (in a sense to be made precise in the sequel).
A single–letter expression for �, which depends solely on the
coding rate and the Neyman–Pearson threshold (to be defined), is
provided. The example of the binary-symmetric channel is studied
in full detail, and some conclusions are drawn.

Index Terms—Channel uncertainty, competitive minimax,
erasure, error exponent, generalized likelihod ratio test (GLRT),
rateless codes, universal decoding.

I. INTRODUCTION

WHEN communicating across an unknown channel, clas-
sical channel coding at any fixed rate, however small, is

inherently problematic since this fixed rate might be larger than
the unknown capacity of the underlying channel. It makes sense
then to try to adapt the coding rate to the channel conditions,
which can be learned online at the transmitter whenever a feed-
back link, from the receiver to the transmitter, is available.

One of the recent promising approaches to this end is rateless
coding proposed in [17], [18] (see also [5]–[7], [14], [20], and
references therein). Independently, rateless codes were also pro-
posed in a networking scenario for the packet erasure channel
[2], [3], [15], where they have been referred to as fountain codes.
Fountain codes also have a low-density structure that allows
computationally efficient decoding. In rateless coding, there is a
fixed number of messages, each one being represented by a
codeword of unlimited length, in principle. A possible receiver
for a rateless code examines, after each symbol has been re-
ceived, whether it can decode the message, with “reasonably
good confidence,” or alternatively, to request, via the feedback
link, an additional symbol.1 Upon receiving the new channel

Manuscript received April 15, 2006; revised February 19, 2007. This work
was supported by the Israel Science Foundation under Grant 223/05. The ma-
terial in this paper will be presented at the IEEE International Symposium on
Information Theory, Nice, France, June 2007.

N. Merhav is with the Department of Electrical Engineering,
Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
(e–mail: merhav@ee.technion.ac.il).

M. Feder is with the Department of Electrical Engineering—Systems, Tel-
Aviv University, Ramat-Aviv 69978, Israel (e-mail: meir@eng.tau.ac.il).

Communicated by G. Kramer, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2007.894695

1Alternatively, the receiver can use the feedback link only to notify the trans-
mitter when it reached a decision regarding the current message (and keep silent
at all other times). In network situations, this would not load the network much
as it is done only once per each message.

output, again, the receiver either makes a decision, or requests
another symbol from the transmitter, and so on. The coding
rate is then defined by divided by the expected number
of symbols transmitted before the decoder makes a decision.
Clearly, at every time instant, the receiver of a rateless communi-
cation system operates just like an erasure decoder [10],2 which
partitions the space of channel output vectors into re-
gions, for each one of the possible messages, and an addi-
tional region for “erasure,” which, in the rateless regime, is used
for requesting an additional symbol. Keeping the erasure proba-
bility small is then motivated by the desire to keep the expected
transmission time, for each message, small. Although these two
criteria are not completely equivalent, they are strongly related.

When the channel is unknown at the decoder, it was suggested
in some of the quoted references to use a universal decoder,
which is inspired by the maximum mutual information (MMI)
decoder [4]: by using a certain threshold, the receiver decides
whether to make a decision or ask for another symbol. While this
approach works fairly well, there is no evidence of optimality.

These observations, as well as techniques such as automatic
repeat request (ARQ) and decision feedback, motivate us to
study the problem in a more systematic manner. Specifically,
we consider the problem of universal decoding with an erasure
option, for the class of discrete memoryless channels (DMCs)
indexed by an unknown parameter vector (e.g., the set of
channel transition probabilities). We harness the competitive
minimax methodology proposed in [9], in order to derive a uni-
versal version of Forney’s classical erasure/list decoder. For a
given DMC with parameter , a given coding rate , and a
given threshold parameter (all to be formally defined later),
Forney’s erasure/list decoder optimally trades off between the
exponent of the probability of the erasure event,

, and the exponent, , of the
probability of undetected error event, , in the random coding
regime.

The universal erasure decoder, proposed in this paper, guaran-
tees universal achievability of an erasure exponent ,
which is at least as large as for all , for some
constant , that is independent of (but does depend
on and ), and at the same time, an undetected error expo-
nent for all (in the random
coding sense). At the very least, this guarantees that whenever
the probabilities of and decay exponentially for a known
channel, so they do even when the channel is unknown, using
the proposed universal decoder. The question is, of course: what
is the largest value of for which the preceding statement holds?
We partially answer this question by deriving a single–letter ex-
pression for a lower bound to the largest value of , denoted
henceforth by , that is guaraneteed to be attainable by
this decoder. While is only a lower bound to the uni-
versally achievable fraction of the error exponent, for

2See also [21], [1], [13], [12] and references therein for later studies.
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(i.e., essentially “no erasure”) and for the BSCs it equals unity,
the optimal true value. But for , may, in general,
be less than unity (as we show in some examples). If we con-
jecture that the true universally achievable fraction of the error
exponent is also less than unity in general, then it means that
there is a major difference between ordinary universal decoding
and universal erasure decoding: While for the former, it is well
known that optimum3 random coding error exponents are fully
universally achievable (at least for some classes of channels and
certain random coding distributions [4], [22], [8]), in the latter,
when the erasure option is available, this may no longer be the
case, in general. Explicit results, including numerical values of

, are derived for the example of the binary-symmetric
channel (BSC), parameterized by the crossover probability ,
and some conclusions are drawn.

The outline of the paper is as follows. In Section II, we estab-
lish the notation conventions and we briefly review some known
results about erasure decoding. In Section III, we formulate the
problem of universal decoding with erasures. In Section IV, we
present the proposed universal erasure decoder and prove its
asymptotic optimality in the competitive minimax sense. In Sec-
tion V, we present the main results concering the performance
of the proposed universal decoder. Section VI is devoted to the
example of the BSC. Finally, in Section VII, we summarize our
conclusions.

II. NOTATION AND PRELIMINARIES

Throughout this paper, scalar random variables (RVs) will
be denoted by capital letters, their sample values will be de-
noted by the respective lower case letters, and their alphabets
will be denoted by the respective calligraphic letters. A sim-
ilar convention will apply to random vectors of dimension
and their sample values, which will be denoted with same sym-
bols in the bold face font. The set of all –vectors with compo-
nents taking values in a certain alphabet, will be denoted as the
same alphabet superscripted by . Thus, for example, a random
vector may assume a specific vector value

as each component takes values in
. Channels will be denoted generically by the letter , or ,

when we wish to emphasize that the channel is indexed or pa-
rametrized by a certain scalar or vector , taking on values in
some set . Information-theoretic quantities, such as entropies
and conditional entropies, will be denoted following the usual
conventions of the information-theory literature, e.g., ,

, and so on. With a slight abuse of notation, when we
wish to emphasize the dependence of the entropy on the un-
derlying probability distribution , we denote it by . The
cardinality of a finite set will be denoted by .

Consider a DMC with a finite input alphabet , finite
output alphabet , and single–letter transition probabilities

. As the channel is fed by an input
vector , it generates an output vector according
to the sequence conditional probability distributions (cf. [16])

(1)

3Optimum exponents—corresponding to optimum maximum-likelihood
(ML) decoding.

for , where for , is under-
stood as the null string. A rate– block code of length con-
sists of –vectors , ,
which represent different messages. We will assume that all
possible messages are a priori equiprobable, i.e.,
for all .

A decoder with an erasure option is a partition of into
regions, . Such a decoder works as

follows: If falls into , , then a decision
is made in favor of message number . If , no decision
is made and an erasure is declared. We will refer to as the
erasure event.

Given a code and a decoder
, let us now define two additional undesired

events. The event is the event of not making the right deci-
sion. This event is the disjoint union of the erasure event and
the event , which is the undetected error event, namely, the
event of making the wrong decision. The probabilities of all
three events are defined as follows:

(2)

(3)

(4)

Forney [10] assumes that the DMC is known to the decoder,
and shows, using the Neyman–Pearson methodology, that the
best tradeoff between and (or, equivalently, be-
tween and ) is attained by the decoder

defined by

(5)

where is the complement of , and where
is a parameter, henceforth referred to as the threshold, which
controls the balance between the probabilities of and .

Forney devotes the remaining part of his paper [10] to derive
lower bounds to the random coding exponents (associated with

), and , of and , the av-
erage4 probabilities of and , respectively, and to investigate
their properties. Specifically, Forney shows, among other things,
that for the ensemble of randomly chosen codes, where each
codeword is chosen independently under an independent and
identically distributed (i.i.d.) distribution

(6)

4Here, “average” means with respect to (w.r.t.) the ensemble of randomly
selected codes.
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where

(7)

and

(8)

A simple observation that we will need, before passing to the
case of an unknown channel, is that the same decision rule
would be obtained if rather than adopting the Neyman–Pearson
approach, one would consider a Lagrange function

(9)

for a given code and a given threshold , as
the figure of merit, and seek a decoder that minimizes it. To
see that this is equivalent, let us rewrite as follows:

(10)

and it is now clear that for each , the bracketed expression
(which has the form of weighted error of a binary hypothesis
testing problem) is minimized by as defined above. Since
this decision rule is identical to Forney’s, it is easy to see that
the resulting exponential decay of the ensemble average

is , as decays according to ,
decays according to , and

, as mentioned earlier. This Largrangian ap-
proach will be more convenient to work with, when we next
move on to the case of an unknown DMC, because it allows us
to work with one figure of merit instead of a tradeoff between
two.

III. UNKNOWN CHANNEL—PROBLEM DESCRIPTION

We now move on to the case of an unknown channel. While
our techniques can be applied to quite general classes of chan-
nels, here, for the sake of concreteness and conceptual sim-
plicity, and following in [10], we confine attention to DMCs.
Consider then a family of DMCs

where is the parameter, or the index of the channel in the class,
taking values in some set . For example, may be a positive
integer, denoting the index of the channel within a finite or a
countable index set. As another example, may simply repre-
sent the set of all single–letter transition probabil-
ties that define the DMC, and if there are some symmetries (like
in the BSC), these reduce the dimensionality of . The basic
questions are now the following.

1. How to devise a good erasure decoder when the underlying
channel is known to belong to the class

, but is unknown?

2. What are the resulting error exponents of and and
how do they compare to Forney’s exponents for known ?

In the quest for universal schemes for decoding with an era-
sure option, two difficulties5 are encountered in light of [10].
The first difficulty is that here we have two figures of merits, the
probabilities of and . But this difficulty can be alleviated
by adopting the Lagrangian approach, described at the end of
the previous section. The second difficulty is somewhat deeper:
Classical derivations of universal decoding rules for ordinary
decoding (without erasures) over the class of DMCs, like the
MMI decoder [4] and its variants, were based on ideas that are
deeply rooted in considerations of joint typicality between the
channel output and each hypothesized codeword . These
considerations were easy to apply in ordinary decoding, where
the score function (or, the “metric”) associated with the op-
timum maximum likelihood (ML) decoding, , in-
volves only one codeword at a time, and that this function de-
pends on and only via their joint empirical distribution,
or, in other words, their joint type. Moreover, in the case of de-
coding without erasures, given the true transmitted codeword

and the resulting channel output , the scores associated
with all other randomly chosen codewords are independent of
each other, a fact that facilitates the analysis to a great extent.
This is very different from the situation in erasure decoding,
where Forney’s optimum score function for each codeword

depends on all codewords at the same time. Consequently, in a
random coding analysis, it is rather complicated to apply joint
typicality considerations, or to analyze the statistical behavior
of this expression, let alone the statistical dependency between
the score functions associated with the various codewords.

This difficulty is avoided if the competitive minimax method-
ology, proposed and developed in [9], is applied. Specifically,
let denote the above defined Lagrangian, where we
now emphasize the dependence on the index of the channel

. Let us also define , i.e., the
ensemble average of the minimum of the above Lagrangian
(achieved by Forney’s optimum decision rule) w.r.t. the channel

for a given . Note that the exponential order of

5These difficulties may also be related to the observation discussed in the
Introduction, that optimum error exponents may not be universally achievable
in the erasure decoding setting.
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is , where and
are the new notations for and ,

respectively, with the dependence on the channel index ,
made explicit. In principle, we would have been interested in
a decision rule that achieves

(11)

or equivalently

(12)

However, as is discussed in [9] (in the analogous context of or-
dinary decoding, without erasures), such an ambitious minimax
criterion of competing with the optimum performance may be
too optimisitic: If is not universally achiev-
able, then the value of the above minimax may grow exponen-
tially with , and then there might be values of for which the
numerator does not tend to zero at all, whereas the denominator
still does. A better approach would be to compete with a sim-
ilar expression of the exponential behavior, but where the term

is being multiplied by a constant , which
we would like to choose as large as possible. In other words, we
are interested in the competitive minimax criterion

(13)

Similarly as in [9], we wish to find the largest value of such
that the ensemble average would not grow
exponentially fast, i.e.,

(14)

The rationale behind this is the following: If is subex-
ponential in , for some , then this guarantees that there
exists a code and a universal erasure decoder , such that
for every , the exponential order of is no
worse than . This, in turn, implies that both
terms of decay at least as , which
means that for the decoder , the exponent of is at
least and the exponent of is at least

, both for every . Thus, the difference
between the two (guaranteed) exponents remains as before
(as the weight of the term in is ), but the
other term, , is now scaled by a factor of .

The remaining parts of this paper focus on deriving a uni-
versal decoding rule that asymptotically achieves for
a given , and on analyzing its performance, i.e., finding the
maximum value of such that still grows subexponentially
rapidly.

IV. DERIVATION OF A UNIVERSAL ERASURE DECODER

For a given , let us define

(15)

and consider the decoder whose decision regions are

(16)

Note that this can be thought of as an extension of a decoder in
the spirit of the generalized–likelihood ratio test (GLRT), where
the unknown parameter is estimated by the ML estimator for
each term individually. While this GLRT–like decoder
is a special case of the above, corresponding to , the more
general decoder, proposed here, assigns higher weights to good
channels, as discussed in [9]. Denoting

(17)

for a given encoder and decoder , our first
main result establishes the asymptotic optimality of in the
competitive minimax sense, namely, that is within a
subexponential factor as small as ,
and therefore, is within the same subexponential
factor as small as .

Theorem 1: For every code

(18)

Proof: The result and the proof technique is sim-
ilar to those of [9]. As and exhaust their spaces,
and , let denote set of values of that achieve

. Observe that for every ,
the expression depends on
only via their joint empirical distribution (or, the joint type).
Consequently, the value of that achieves also depends
on only via their joint empirical distribution. Since the
number of joint empirical distributions of never exceeds

(see [4]), then obviously

(19)

as well. Now, for every encoder and decoder , we get (20) at
the top of the following page. Thus, we have defined
and sandwiched it between and

uniformly for every and . Now, obviously, min-
imizes , and so, for every

(21)
where the first and the third inequalites were just proved in the
chain of inequalities (20), and the second inequality follows
from the optimality of w.r.t. . Since we have shown
that

for every , we can now minimize the right-hand side (RHS)
w.r.t. and the assertion of Theorem 1 is obtained. This com-
pletes the proof of Theorem 1.
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(20)

V. PERFORMANCE

In this section, we present an upper bound to from which
we derive a lower bound to , the largest value of for which

is subexponential in .
We begin with a few definitions. The empirical dis-

tribution of is the vector of relative frequencies
, being the number of

occurrences of within . The type class of
is the set of all such that . We

next define the class of the sequences of random coding
distributions that we assume. For every positive integer

, let be a random coding distribution of the following
form:

(22)

where, of course, . Let

and let be an extension of the function that
is defined over the continuum of probability distributions over

(rather than just the set of rational probability distributions
with denominator ). A sequence of random coding distribu-
tions is said to belong to the class if there exists

such an extension that converges, as , to a cer-
tain nonnegative functional , uniformly over all proba-
bility distributions over .

It is easy to see that the class essentially covers all
random coding distributions that are customarily used (and
much more). In particular, to approximate a random coding
distribution which is uniform within a small neighborhood of
one type class—corresponding to a probability distribution ,
and which vanishes elsewhere, we set for every
in that neighborhood of , and elsewhere. For
the case where is i.i.d.,

the Kullback–Leibler divergence between and . In partic-
ular, if for all , then

, being the entropy associated with the distribu-
tion .

Given a distribution on , a positive real , and a value of
, let

(23)
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where is the expectation and is the mutual
information w.r.t. a generic joint distribution

of the RVs . Next, for a pair ,
and for two real numbers and , , define

(24)
where is the entropy of induced by . Finally, let

(25)
with the convention that if the denominator vanishes, then

. Our main result, in this section is the following
theorem.

Theorem 2: Consider a sequence of ensemble of codes where
each codeword is drawn independently, under a distribution ,
where the sequence is a member of the class . Then

1. for every

2. there exists a sequence of encoders and decoders such that
for every

The proof of the first part of Theorem 2 appears in the Ap-
pendix . The second part follows immediately as discussed after
(14).

We now pause to discuss Theorem 2 and some of its aspects.
Theorem 2 suggests a conceptually simple strategy: Given
and , first compute using (25). This may require

some nontrivial optimization procedures, but it has to be done
only once, and since this is a single–letter expression, it can be
carried at least numerically, if closed–form analytic expressions
are not apparent to be available (see the example of the BSC
below). Once has been computed, apply the decoding
rule with , and the theorem guarantees that the
resulting random coding error exponents of and are at
least and ,
respectively.

The theorem is interesting only when , which
is the case iff

or equivalently iff

When , the proposed universal decoder with
has the important property that whenever

Forney’s optimum decoder yields an exponential decay of
, then so does the corresponding

exponent of the proposed decoder . It should be pointed
out that the exponential rates and

, guaranteed by Theorem 2, are
only lower bounds to the real exponential rates, and that true
exponential rate, at some points in , might be larger.

Our last comment concerns the choice of the threshold .
Thus far, we assumed that is a constant, independent of .
However, in some situations, it makes sense to let depend on
the quality of the channel, and hence on the parameter . Intu-
itively, for fixed , if the signal–to–noise ratio (SNR) becomes
very high, the erasure option will be used so rarely that it will
effectively be nonexistent. This means that we are actually no
longer “enjoying” the benefits of the erasure option, and hence
not the gain in the undetected error exponent that is associated
with it. An alternative approach is to let depend on
in a certain way. In this case, would be redefined as fol-
lows:

(26)

The corresponding generalized version of the competitive min-
imax decision rule would now be

(27)

where

(28)

and

(29)

By extending the performance analysis carried out in the Ap-
pendix, the resulting expression of now becomes

(30)
The main question that naturally arises, in this case, is: which
function would be reasonable to choose? A plausible guide-
line could be based on the typical behavior of

which can be assessed, using standard bounding techniques,
under the hypothesis that is the correct message. For ex-
ample, may be given by with some constant ,
or for some . This will make the probability of era-
sure (exponentially) small, but not too small, so that there would
be some gain in the undetected error exponent for every .

VI. EXAMPLE—THE BINARY-SYMMETRIC CHANNEL

Consider the BSC, where , and where des-
ignates the crossover probability, and let the sequence of random
coding distributions be uniform, i.e., for all

, which as mentioned earlier, belongs to the class
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with . We would like
to examine, more closely, the expression of and its be-
havior in this case. Let denote the binary entropy function

, . Denoting the modulo
sum of and by , we then have

(31)

where the inequality is, in fact, an equality achieved by a back-
ward where is independent of . Since
is independent of , this easily yields

(32)

and so, we get (33) at the bottom of the page with (34), also at
the bottom of the page. This expression, although still involves
nontrivial optimizations, is much more explicit than the general
one. We next offer a few observations regarding the function

for the example of the BSC.
First, observe that if is a singleton, i.e., we are back to the

case of a known channel, then , and the numerator, after
maximization over and , becomes , and so does
the denominator, thus , as expected.

We next demonstrate that . This result is ex-
pected, as the case is asymptotically equivalent (cf. [10])

to the case without erasures in the sense that
coincide with Gallager’s random coding exponent

[11] (although erasures are still possible). This is in agreement
with the aforementioned full universality result for ordinary uni-
versal decoding.

Referring to the definition of the Gallager function
for the BSC

(35)
let us define and , and rewrite
the numerator of the expression for as follows:

(36)

Now, let us choose , where is the achiever of
, and ,

where is the achiever of (ob-
serving that , therefore, this is choice is
feasible). With this choice, the numerator of becomes
equal to the denominator, and so, .

Finally, in Table I, we provide some numerical results
pertaining to the function , where all minimizations
and maximizations were carried out by an exhaustive search
with a step-size of in each dimension. As can be seen,
at the left–most column, corresponding to , we indeed
obtain . As can also be seen, is always
strictly less than unity for , and it in general decreases as

grows.

VII. CONCLUSION

We have addressed the problem of universal decoding
with erasures, using the competitive minimax methodology
proposed in [9], which proved useful. This is in contrast to
earlier approaches for deriving universal decoders, based on
joint typicality considerations, for which we found no apparent
extensions to accommodate Forney’s erasure decoder. In order

(33)

(34)
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TABLE I
NUMERICAL VALUES OF � (R;T ) FOR VARIOUS VALUES OF R AND T

to guarantee the uniform achievability of a certain fraction of
the exponent, the competitive minimax approach was applied
to the Lagrangian, pertaining to a weighted sum of the two
error probabilities.

The analysis of the minimax ratio, , resulted in a single-
letter lower bound to the largest universally achievable fraction

of Forney’s exponent. An interesting problem for fu-
ture work would be to derive a (hopefully compatible) lower
bound. This requires the derivation of an exponentially tight
lower bound to , which is a challenge.

Our results cover performance analysis of competitive–min-
imax universal decoders with various types of random coding
distributions in a considerable wide class . This is in contrast
to earlier works (see, e.g., [4], [22]), which were firmly based on
the assumption that the random coding distribution is uniform
within a set. A similar analysis technique can be applied also to
universal decoding without erasures.

Finally, we analyzed the example of the BSC in full detail and
demonstrated that . We have also provided some
numerical results for this case.

APPENDIX

PROOF OF THEOREM 2

For a given subset , let denote the indicator function of , i.e., if and otherwise.
First, observe that

(A1)

and similarly

(A2)

Then, we have
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(A3)

where follows from the fact that the maximum (over ) of a summation is upper-bounded by the summation of the maxima,
follows from (A1) and (A2), and and follow from the fact that if is nonnegative then

(A4)

Now, for every given and , let be the achiever of

and let be the achiever of
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Note that and depend on and , but not on the parameter . Let us denote

(A5)
Now, obviously, we get

(A6)

where in we used again (A4). Assuming that the codewords are drawn independently, we then have
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(A7)

where in the last step we have used Jensen’s inequality. Now, observe that the summands do not depend on , therefore, the effects
of the summation over and the factor of cancel each other. Also, the sum of contributions of identical expectations

create a factor of (upper-bounded by ) raised to the power of . Denoting

we have

(A8)

To assess the exponential order of , we use the method of types [4] as well as the assumption that the sequence of random
coding distributions belongs to the class . Let denote the empirical distribution of , and let denote the type class of , i.e.,
the set of with . Let denote the corresponding empirical entropy of . Similarly, let denote the empirical
joint distribution of and let denote the corresponding empirical expectation, i.e., the expectation w.r.t. . Also, let

denote the conditional type class of given , i.e., the set of with and let denote the corresponding
empirical mutual information between and . Then, we get

(A9)

where independently of by the uniform convergence assumption that defines the class , and where is
defined as in (23). On substituting this bound into the upper bound on , we get

(A10)
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We would like to find the maximum value of such that would be guaranteed not to grow exponentially. To this end, we
can now ignore the factor , which is polynomial in (cf. (19)). Thus, the latter upper bound will be
subexponential in as long as

(A11)

holds or, equivalently, for every , there exist , , such that

(A12)

i.e.,

(A.13)

In other words, for every , where is defined as in (25)), is guaranteed not to grow exponentially
with . This completes the proof of Theorem 2.
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